

© Copyright Hackolade 2023

Principles of

Domain-Driven

Data Modeling

Tackling complexity

at the heart of your data

Hackolade – Domain-Driven Data Modeling Page 2

Table of Contents
Introduction ... 3

Complex data models are counter-productive ... 4

Domain-Driven Design .. 8

Domain-Driven Data Modeling .. 9

Focus on the core domain ... 10

Break down complex problems into smaller ones ("bounded context") 12

Data Modeling is a communication tool ("ubiquitous language") 14

Keep together what belongs together ("aggregates") ... 16

Reach a shared understanding .. 19

Iterate and evolve ... 20

Lifecycle of Domain-Driven Data Modeling ... 21

Polyglot Data Modeling .. 22

Metadata-as-Code .. 23

Frequently Asked Questions .. 25

What if a concept is shared across 2 or more bounded contexts? 25

What is the best way to map DDDM terms with Hackolade Studio concepts? 27

Takeaways ... 30

Hackolade – Domain-Driven Data Modeling Page 3

(This eBook is greatly inspired by the principles of Domain-Driven Design, the Agile

Manifesto, and The Lean Startup)

Introduction
There is quite a bit of debate, to say the least, about the industry appeal for Data

Modeling in general, and Enterprise Data Models in particular. Some say that data

modeling is dead. Some say that it is on life support. At the same time, everyone in

data realizes that some sort of data modeling (or at least schema design ahead of

writing code) is a critical success factor for a successful software development project.

These data modelers would argue that it is even more important these days than it was

before.

Our take at Hackolade is that traditional data modeling must evolve to remain

relevant. There are a number of reasons why traditional data modeling got a bad

reputation. If data modeling takes too long, gets in the way of getting things done, adds

more complexity than needed, or is done for the sake of data modeling alone (instead of

for the purpose of achieving the delivery of great software), then no wonder that some

people will try to avoid it.

And they would be right, except that avoiding it all together goes to the other extreme,

and that doesn't get us to a good place either. The authors of the Agile Manifesto were

right on target when they explained: "We want to restore a balance. We embrace

modeling, but not in order to file some diagram in a dusty corporate repository. We

embrace documentation, but not hundreds of pages of never-maintained and rarely-

used tomes."

At Hackolade, we think that there's a pragmatic, modern way to perform just enough

data modeling to reach the strategic objectives of organizations, and not too much that it

would become counter-productive. Such balance can be achieved using our next-gen

Hackolade Studio data modeling tool, and using an approach that we call

"Domain-Driven Data Modeling".

https://en.wikipedia.org/wiki/Domain-driven_design
https://agilemanifesto.org/history.html
https://agilemanifesto.org/history.html
https://en.wikipedia.org/wiki/Lean_startup#Build-Measure-Learn
https://hackolade.com/blog/data-modeling-is-dead-long-live-schema.html
https://hackolade.com/blog/data-modeling-is-dead-long-live-schema.html
https://www.linkedin.com/posts/josephreis_dataengineering-datamodeling-data-activity-7048722463010013185-OyIy/
https://agilemanifesto.org/history.html

Hackolade – Domain-Driven Data Modeling Page 4

Complex data models are counter-productive
A “code-first” approach refers to the practice of developers to immediately start writing

code as soon as an idea is expressed. It may make sense for quick-and-dirty

prototyping, but it does not work for applications with any kind of complexity. It greatly

lowers time-to-market and total cost-of-ownership to think and design first, before

coding.

At the other extreme, some organizations can get paralyzed by over-thinking and

creating monolithic Enterprise Data Models that slow down execution.

They say that a picture is worth a thousand words. That's only true when the picture is

an abstraction of reality that actually facilitates understanding...

Enterprise Data Model

The above data model would clearly not achieve the clarification objective... The

authors may think that it makes them look smart, but it is actually counter-

productive! Business users won't understand it. Technical users (including developers)

will wonder how that's ever going to solve their challenges. And frankly, even data

modelers will be challenged to understand a model with hundreds of entities.

https://hackolade.com/img/edm.png

Hackolade – Domain-Driven Data Modeling Page 5

Enterprise Data Modeling initiatives often fail to deliver on time, if at all. By the time the

EDM is completed, it is already obsolete.

Business Requirements

Then there's the issue of endless semantic discussions about whether to use the term

customer, client, person, party, or whatever abstraction is supposed to be generic

enough that it fails to describe the actual "thing" in terms that the stakeholders actually

understand.

https://hackolade.com/img/requirements.png

Hackolade – Domain-Driven Data Modeling Page 6

Abstraction

Abstractions are good… to a point. Until they become counter-productive. It is hard

enough to not lose anything in the translation of business requirements into technical

specifications, so it is critical to use the terms that are familiar to business users when

conducting the business, so the meaning is intuitively obvious to the casual observer.

Some will argue that there might be an issue down the road, or that another division in

the company might be using a different term for the same thing. Let's use common

sense here, and remain pragmatic. Applications evolve over time, so terms can evolve

too. By wanting to make things perfectly abstract from the get-go, there's only one thing

that can occur: delays in delivering the project, with no guarantees of a better result.

Finally, one has to wonder why a domain expert of an organization's core business

would start their work with an industry data model?

Industry Data Models

https://hackolade.com/img/abstraction.png
https://hackolade.com/img/industry-models.png

Hackolade – Domain-Driven Data Modeling Page 7

Maybe an industry data model is useful for someone who's new to an industry and

wants an overview of unfamiliar concepts. Maybe there are some descriptions that

could serve as a basis for further discussions. Maybe it could help validate that nothing

has been overlooked. Maybe the models provides information about non-core aspects

of the business.

That can very well be true, but surely, an in-house domain expert knows more about the

core business than the industry data model might reveal, right?

Hackolade – Domain-Driven Data Modeling Page 8

Domain-Driven Design
Eric Evans is the author of the book "Domain-Driven Design: Tackling Complexity in the

Heart of Software" published in 2003, which is considered one of the most influential

works on Domain-Driven Design (DDD). In a nutshell, its principles include:

• bounded context: managing the complexity of the system by breaking it down into smaller,

more manageable pieces. This is done by defining a boundary around each specific domain

of the software system. Each bounded context has its own model and language that is

appropriate for that context.

• domain model: using a conceptual model of the domain that represents the important

entities, their relationships, and the behaviors of the domain.

• ubiquitous language: establishing a common vocabulary used by all stakeholders of a

project, and reflecting the concepts and terms that are relevant to the business.

• context mapping: defining and managing the interactions and relationships between different

bounded contexts to ensure consistency between the different models and facilitate

communication between teams.

• aggregates: identifying clusters of related objects, and treating each of them as a single unit

of change.

• continuous refinement: an iterative process with continuous refinement of the domain model

as new insights and requirements are discovered. The domain model should evolve and

improve over time based on feedback from stakeholders and users.

These principles are striking by their common sense when dealing with application

development, and are also applicable to enhance data modeling. Some data modeling

traditionalists have expressed reservations about DDD. For every methodology and

technology, there are of course examples of misinterpretations and misguided

efforts. But applied with clairvoyance and experience, they lead to great success.

https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://tdan.com/domain-driven-development-part-1/29632

Hackolade – Domain-Driven Data Modeling Page 9

Domain-Driven Data Modeling
We see DDD principles as directly applicable to data modeling to further enhance its

relevance, rather than as an alternative methodology.

With Domain-Driven Data Modeling (DDDM) the main principles are:

• focus on your core ("domain and sub-domains")

• break down complex problems into smaller ones ("bounded context")

• use data modeling as a communication tool ("ubiquitous language")

• keep together what belongs together ("aggregates")

• reach a shared understanding between business and tech ("collaboration of domain experts

and developers")

• iterate and evolve ("continuous refinement")

Domain-Driven Data Modeling Principles

Hackolade – Domain-Driven Data Modeling Page 10

Focus on the core domain

The term "domain" may itself be subject to interpretation. The domain is defined here

as a sphere of knowledge or activity that a software system is designed to support, and

that its corresponding data model is supposed to represent. It denotes the business

problem or opportunity that the data model is intended to address. The domain is the

core of that business problem or opportunity, and it defines the key concepts, behaviors,

and relationships that are relevant in that specific context.

Defining the domain helps ensure that the software system is designed around the

needs of the business and that the models and language used in the system are closely

aligned with the business problem. By focusing on the domain, developers can create

software systems that are easier to understand, maintain, and extend over time.

A subdomain is a part of the overall domain that represents a distinct area of the

business problem or opportunity. Subdomains are used to break down complex

problems into smaller, more manageable parts, and to help organize the development

of the software system around the business problem.

There are three types of subdomains in DDD:

1. Core subdomains: represent the most important parts of the business problem or

opportunity. They are the areas of the business that provide the most competitive advantage

or differentiation, and are the focus of most of the effort.

2. Supporting subdomains: represent the parts of the business that are necessary for the core

subdomains to function, but that are not themselves the main focus of the project. Supporting

subdomains may include things like billing, customer management, or reporting, for which

there probably exist conformed dimensions in the organization.

3. Generic subdomains: represent parts of the business that are common across many

different industries, and that are not specific to the business problem or opportunity being

addressed. Examples of generic subdomains might include things like definitions of time,

address, and other common dimensions.

Hackolade – Domain-Driven Data Modeling Page 11

The main focus must be on core subdomains, while supporting subdomains can be

delegated, and generic subdomains can often be outsourced. Each subdomain has its

own models, language, and bounded contexts, and may be developed by a separate

team within the development organization. By breaking down the domain into smaller,

more manageable parts, you can reduce complexity and increase the effectiveness of

the effort.

Hackolade – Domain-Driven Data Modeling Page 12

Break down complex problems into smaller ones ("bounded context")

In DDD, Eric Evans talks about the concept of a "big ball of

mud", which refers to a monolithic system that has become

overly complex, difficult to understand, and resistant to

change, all things that can occur when there is no clear

architecture or design guiding the development process.

The same seems to apply to data modeling. Enterprise

Data Models are designed to provide a comprehensive and standardized view of an

organization's data assets and how they relate to one another. As a result they run the

risk of being too complex, hard to maintain, and hard for stakeholders to understand. It

can be challenging to establish clear ownership and governance of an EDM, especially

in larger organizations with distributed teams and data sources.

It may be tempting to try to do a monolithic EDM for the entire enterprise. It sounds like

a big challenge, and particularly if it is a prerequisite, it surely slows down the delivery of

a small enhancement. Politics start playing a role which does not help anyone.

A "bounded context" defines the boundaries of a subdomain within which the data

model applies. It is applicable to Data Modeling in the sense that it is useful to break

down complex EDMs into smaller, more manageable models that correspond to each

core subdomain. This simplifies the modeling process and makes it easier to develop

and maintain models that are closely aligned with the business domain.

This will avoid the "big ball of mud" syndrome for data modeling. You will be able to

deliver early and often as the project evolves, and iterate before moving to the next

one. Inevitably, new discoveries along the way might trigger changes in earlier models -

- that's OK, we're agile, and we understand that nothing is set in stone forever. At least

things get done in the meantime.

Note that we're not suggesting that you should ignore relevant context or overall

understanding of the whole company. We're only saying that we all know what happens

when scope grows: delays. If you're doing it for the right reasons, that's great! But let's

make sure that it is critical to the core effort.

Hackolade – Domain-Driven Data Modeling Page 13

Nobody is suggesting that the definition of a bounded context should be so strict that

you'll create a system that makes no sense. Use your best collective judgement to

correctly define the scope.

Hackolade – Domain-Driven Data Modeling Page 14

Data Modeling is a communication tool ("ubiquitous language")

As in all aspects of life, communication is critical to avoid

misunderstanding. One of the purposes of data modeling

is to create a shared understanding of the business

problem or opportunity through its abstraction and

representation in the form of an Entity-Relationship

Diagram (ERD).

Sounds great, in theory. But misunderstandings can

easily appear. Developers often prefer vocabulary

relating to technical solutions and architectural

implementations. Data modelers may be more inclined to

use abstract and conceptual terms. Domain experts and business users may prefer to

use language that is more familiar and understandable to them. Misalignment of these

approaches slows down the modeling process and results in a model that could fail to

meet the needs of the business.

Similarly, there can be misunderstandings between developers and data modelers

when it comes to defining requirements and designing data structures. Developers may

feel that data modelers are too focused on theoretical considerations and not enough on

practical implementation, while data modelers may feel that developers are not taking

the long-term needs of the organization into consideration.

Developing software, and managing data more generally, is a people

business. Emotional intelligence, empathy, open-mindedness, and experience on all

sides can only help. But it often all comes down to vocabulary. Speaking a common,

ubiquitous language helps people work together.

Overall, effective communication and collaboration between the different stakeholders

(data modelers, subject matter experts, business users, and developers) is key to

creating a data model that is accurate, relevant, and meets the needs of the

organization.

The exercise should involve using language and concepts that are more accessible to

the business users, as well as providing clear explanations and examples of more

technical terms. It can also be helpful to establish clear guidelines and standards for

Hackolade – Domain-Driven Data Modeling Page 15

the language and terminology used in the data model. This helps ensure that everyone

involved in the modeling process is using consistent and clear language, and can

minimize confusion and semantic arguments.

It also means that developers should use, ubiquitously, the same vocabulary in the

application code, database entities and attributes, and in APIs. It makes it so much

easier later on to debug issues and discuss enhancements.

Hackolade – Domain-Driven Data Modeling Page 16

Keep together what belongs together ("aggregates")

With traditional logical data modeling,

the aim is to create a technology-

agnostic model documenting the

business rules. All that works well

enough using the famous rules of

database normalization -- as long as

your target technologies are relational

only.

But as soon as we're having to deal with

NoSQL or with APIs and modern storage formats, it turns out that logical models which

respect third normal form for many-to-many relationships with junction tables are not

"technology-agnostic" after all. In a NoSQL document database, you would embed

information and not use any junction table. Similarly, supertypes/subtypes can be

handled in NoSQL via polymorphism instead of inheritance tables, etc.

In DDDM with aggregates, we make a conscious decision to identify clusters of related

objects and treat each of them as a single unit of change. With aggregates it is easier

to enforce consistency and integrity within a domain.

And as it turns out, this is beneficial also on the front of object-oriented programming

and efficient use of NoSQL technologies. Let’s explore this.

Object impedance mismatch

Impedance mismatch is a fancy term used to describe the problem that arises when the

way data is represented in a database or storage system does not match the way it is

used in the application code. In other words, when it is normalized, and thus results in

inefficiencies and complexities in the application code when retrieving or manipulating

data.

https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization

Hackolade – Domain-Driven Data Modeling Page 17

Normalization

In contrast, NoSQL document databases allow for more flexible data models, including

nested objects and arrays, which can better match the needs of some applications, and

the life of developers.

Denormalization

In DDD, aggregates are a way of grouping related objects and business logic together

into cohesive units. Using aggregates can help solve the impedance mismatch problem

by providing a way to map complex and dynamic domain objects to more flexible

database schemas, particularly in the context of NoSQL document databases with

nested objects.

https://hackolade.com/img/normalization.png
https://hackolade.com/img/denormalizaton.png

Hackolade – Domain-Driven Data Modeling Page 18

Query-driven data modeling

Query-driven database design is an approach to database schema design that focuses

on optimizing database queries and data retrieval for a specific application use case,

rather than on an application-agnostic structure of the underlying data.

Aggregates can help with query-driven database design by providing a way to group

related data together in a way that supports efficient queries and data retrieval. By

grouping related data into aggregates, we can reduce the number of database queries

needed to retrieve data for a particular operation, and improve the performance of the

application.

By using aggregates, we can improve the performance and maintainability of the

application, while also ensuring that the data model is closely aligned with the

application's domain. And making life simpler for developers by eliminating the

impedance mismatch discussed above.

Hackolade – Domain-Driven Data Modeling Page 19

Reach a shared understanding

If tech and business don't share the same understanding

on the meaning and context of data, organizations are

exposed to great risks of misguided business decisions,

poor data quality, inaccurate or incomplete data, inefficient

processes, and missed opportunities for innovation and

growth. The lack of collaboration will also be a source of

frustrations, delays, missed deadlines and budget targets,

and more undesirable consequences. No fun.

The main challenge in achieving a shared understanding

on data is the difference in language, knowledge, and

priorities. Business stakeholders may not have a deep

understanding of the technical aspects of data, while tech stakeholders may not fully

appreciate the business context and objectives.

Modern data modeling is a valuable tool to mitigate these risks and challenges, by

providing a common language, clarity, visualization, an iterative process, and

validation. As long as it is done with pragmatism and applying the principles detailed

above, an Entity-Relationship Diagram can serve as an enabler for collaboration and

engage in a fruitful dialog between analysts, architects, designers, developers, and

DBAs.

A data model describes the business. A data model is the blueprint of the

application. Such a map helps evaluate design options beforehand, think through the

implications of different alternatives, and recognize potential hurdles before committing

sizable amounts of development effort. A data model helps plan ahead, in order to

minimize later rework. It helps ensure that all stakeholders have a clear and accurate

understanding of the data requirements and can work together to build effective

software systems

This alignment between business and tech increases efficiency, improves decision-

making, and reaches better outcomes for the business.

Hackolade – Domain-Driven Data Modeling Page 20

Iterate and evolve

The adage "Rome wasn't built in a day" attests to the need

for time to create remarkable things. We could add that

they did not start with a single, complete blueprint before

laying the first brick.

Deep insights and breakthroughs only happen after living

with the problem through many iterations.

The same way that software development is being built

incrementally nowadays, rather than in big bulky deliveries,

it makes sense to approach data modeling in a mindset of

continuous evolutions. Each iteration builds on the previous one. Each iteration

typically involves a small set of improvements, which are validated and refined before

being incorporated into the next iteration. Each iteration is in sync with the application

development evolutions and follows the same lifecycle.

Hackolade – Domain-Driven Data Modeling Page 21

Lifecycle of Domain-Driven Data Modeling
We just covered the principles of DDDM and how they differ from the traditional data

modeling approach used for decades.

Domain-Driven Data Modeling Principles

They should now be orchestrated and deployed using the following steps:

• start with requirements,

• define the bounded context of the domain,

• develop a high-level model while assembling the shared vocabulary,

• design screens and reports, draw business logic flowcharts

• analyze and quantify workloads and access patterns

• create a polyglot data model

• derive target-specific physical models

• generate schemas

• integrate with lifecycle of application changes through metadata-as-code

• publish to data catalogs

• iterate and evolve

Hackolade – Domain-Driven Data Modeling Page 22

Domain-Driven Data Modeling Lifecycle

The 2 steps you might be less familiar with are those involving Polyglot Data Modeling

and Metadata-as-Code, as they're specific to using Hackolade Studio.

Polyglot Data Modeling

We highlighted earlier how traditional logical data models have characteristics that are

too constraining for the modern data stack: they're not as technology-agnostic as

originally thought, they can only be normalized, and they can only use scalar data types.

In contrast, Hackolade Studio's Polyglot Data Models may be denormalized and

polymorphic, may use complex data types, and are truly technology-agnostic. They

also can display a graph view to render a conceptual model that is friendly to business

users.

A polyglot model allows you to define data structures once, then instantiate them in any

of the physical targets supported by the tool:

https://hackolade.com/polyglot-data-modeling.html
https://hackolade.com/img/dddm-lifecycle.png

Hackolade – Domain-Driven Data Modeling Page 23

Polyglot Data Modeling

Metadata-as-Code

Hackolade Studio provides a native integration to Git repositories and platforms such as

GitHub, GitLab, Bitbucket and Azure DevOps Repos. The primary benefits include

collaboration, versioning, branching, conflict resolution, peer review workflows, change

tracking and traceability.

But the additional advantage is in the fact that we use Git as a repository technology

instead of proprietary servers provided by traditional data modeling tools. These

servers require costly licenses, infrastructure, installation, maintenance, backups,

upgrades, etc…

Furthermore, we're now able to co-locate data models and their schema artifacts with

application code, so they can follow the lifecycle of application changes.

https://hackolade.com/img/polyglot-dm.png

Hackolade – Domain-Driven Data Modeling Page 24

Metadata-as-Code Infinite Loop

And last but not least, our Metadata-as-Code approach provides a single source-of-truth

for business and technical stakeholders as the data model in the Git repo is the source

of the technical schemas used by applications, databases, and APIs at the same time

as it is the source for the business-facing data dictionaries. This architecture

contributes to the shared understanding of data by all the stakeholders.

https://hackolade.com/metadata-as-code.html
https://hackolade.com/img/metadata-as-code-infinite-loop.png

Hackolade – Domain-Driven Data Modeling Page 25

Frequently Asked Questions

What if a concept is shared across 2 or more bounded contexts?

In his article on the subject, Martin Fowler created this useful image to describe the

situation:

Bounded contexts

Inevitably, some concepts sit on the boundary and are shared between bounded

contexts. Should you still have a single data model per bounded context, or are you

then forced to have a single model covering multiple bounded contexts?

The answer is very clear, from our perspective. Having a single model covering multiple

bounded contexts would defeat the purpose of having bounded contexts! You should

therefore continue to have a single model per bounded context. And each model should

reference an external definition of each common concept. In other words using the

example above, you should have a definition of the Customer concept. The Customer

definition contains a set of common attributes, a set of attributes related only to the

Sales Context, and another set of attributes related only to the support context. With

JSON, it is easy to group attributes:

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/images/boundedContext/sketch.png

Hackolade – Domain-Driven Data Modeling Page 26

Customer concept definition

It is easy, in the Sales Context model, to make an external reference to the Customer

definition, and pick the relevant attributes.

https://hackolade.com/img/customer-concept-definition.png

Hackolade – Domain-Driven Data Modeling Page 27

What is the best way to map DDDM terms with Hackolade Studio

concepts?

Vocabulary originally introduced by DDD matches directly with concepts in Hackolade

Studio polyglot and physical models.

Let's review DDD definitions:

• Domain: the problem to be addressed with a software effort. It is divided into

subdomains:

o Core domain

o Supporting subdomain(s)

o Generic subdomain(s)

• Bounded context: a segment of the solution (see image above) that requires:

o its own ubiquitous language, and where the ubiquitous language is consistent

o its own architecture

o a specific responsibility enforced with explicit boundaries

o ideally covering no more than one subdomain

• Aggregate: represents a cohesive unit of related objects that can be treated

together for the purpose of data changes. The aggregate ensures that all

operations and business rules are applied consistently, and provides a clear

boundary for transactional consistency. It consists of three main components:

o a single root: serves as the entry point and the main point of reference for the

aggregate. It is responsible for maintaining the identity of the aggregate as a whole.

o entities: objects that have their own unique identity and lifecycle within the aggregate.

They represent concepts or entities that have distinct attributes and behavior. Entities

are typically mutable and can be modified or updated over time.

o value objects: objects that do not have their own identity but are defined by their

attributes or values

It's important to note that while the root entity holds the identity of the aggregate, other

entities within the aggregate may have their own local identities relevant only within the

scope of the aggregate. These local identities help to establish relationships and

maintain consistency within the aggregate.

Hackolade – Domain-Driven Data Modeling Page 28

In the book Implementing Domain-Driven Design, the author Vaugh Vernon shows this

diagram to illustrate aggregates:

DDD cart aggregate

In Hackolade Studio, the following hierarchy exists:

• Model: an abstraction using an Entity-Relationship Diagram or a graph to

describe and document the system of an organization. Stored as a physical file.

o Container: generic term which translates, depending on the physical

target, to: database, schema, bucket, keyspace, or namespace, etc.

▪ Entity: generic term which translates, depending on the physical

target, to: table, collection, record, node label, vertex label, class,

subclass, request or response resource, etc.

▪ Attribute: generic term which translates, depending on the physical

target, to: column, field, subject, array; map, list, etc.

▪ Relationship: generic term which translates, depending on the

physical target, to: foreign-key relationship, reference, edge label,

etc.

Each object above, no matter its level in the hierarchy, has properties that are displayed

in the Properties Pane.

These DDD terms map to Hackolade Studio concepts:

• Should a Hackolade model represent an entire domain, a subdomain, or a bounded context?

It depends on complexity, scale, and implementation. Remember that with DDDM, just like

with DDD, we’re trying to break down complex problems into smaller ones. We’re also trying

to avoid large enterprise models. Often a solution is to have one model per bounded context,

and to have a physical implementation per bounded context, as is often seen with micro-

services and event-driven architectures. Remember also that a physical model in Hackolade

https://hackolade.com/img/ddd-cart-aggregate.png

Hackolade – Domain-Driven Data Modeling Page 29

Studio can be composed of multiple subsets of different polyglot models.

But let’s be flexible and open-minded to pragmatic solutions. If it makes sense to have

multiple bounded contexts in the same model, Hackolade Studio will accommodate that. If

the model then grows to an unreasonable size, it might be time to split into separate models.

• An aggregate maps directly to a Hackolade Studio entity in a polyglot model.

• DDD entities maps to subobjects in aggregates (called entities in DDD vocabulary) which

remain as such in target technologies that support complex data types. For target

technologies that only support scalar data types, like RDBMS and SQL-like analytics,

aggregates are normalized when derived from polyglot. In other words, entities that are part

of aggregates get normalized into separate tables.

• An identity maps directly to a primary key at the root level, and to a foreign key relationship in

subobjects.

• Value objects map to attributes.

Here is an illustration of how multiple access patterns for an ordering systems result in a

combination of a denormalized entity (orders) and normalized entities (customers and

products)

DDD order aggregate mapping

https://hackolade.com/img/ddd-order-aggregate-mapping.png

Hackolade – Domain-Driven Data Modeling Page 30

Takeaways
If you read all the way to this point, you might feel that there's a lot to swallow. But in

effect, much of it are just subtle nuances of existing methods, fine-tuned to

accommodate the modern 21st century data stack, and simplified to eliminate heavy

counter-productive practices in favor of a lean and pragmatic approach focused on the

nimble delivery of quality software and data that will benefit many stakeholders.

Of course, such an approach will greatly benefit from its own modern toolset.

Stakeholders can be better served by a next-gen data modeling tool built from the

ground up to support them. Hackolade Studio will allow you to be as rigorous or as

reactive as your organization chooses to be. You may follow the Domain Driven Data

Modeling process from A thru Z. Or you may start directly with a target-specific physical

schema, then iterate. That's up to you.

In practice, many organizations use agile data modeling methodologies that prioritize

flexibility and collaboration over creating a fixed and complete model. This approach

involves working closely with stakeholders to identify the most critical data assets and

relationships and iteratively refining the model over time based on new insights and

changing business needs. At Hackolade, we support customers in that journey, and

assist with our Domain-Driven Data Modeling process, leveraging Polyglot data

modeling outcomes and target-specific physical data models. Such models are

considered to be metadata that can be treated as code.

